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Abstract. In this paper, we present computer simulation results of traffic flow on a two-lane roadway
with different types of vehicles, cars and trucks for example. We consider two classes of two-lane traffic
cellular automaton models, namely the well known Nagel-Schreckenberg model and an extension of the
Fukui-Ishibashi model. These two models, which differ in their acceleration limits, show an important
differences in their fundamental diagrams, lane-changing and ping-pong behaviors. Moreover, we investigate
the importance of braking noise and the proportion of trucks on the traffic flow of a two-lane roadway.

PACS. 89.40.+k Transportation – 05.70.Fh Phase transitions: general studies – 05.65.+b Self-organized
systems – 05.40.Jc Brownian motion

1 Introduction

In the last years, vehicular traffic problems have attracted
much attention, and a number of cellular automaton
(CA) models describing the traffic flow have been pro-
posed [1–4]. For a realistic description of traffic on high-
ways the idealized single-lane models were generalized to
develop CA models of two-lane traffic [5–8]. Several at-
tempts have been made so far in this direction, and differ-
ent lane-changing procedures have been proposed [9–13].
These procedures can be symmetric or asymmetric with
respect to the lanes. In the same way, if there are dif-
ferent types of vehicles with different maximum possible
speeds noted by vmax (cars and trucks for example), the
lane-changing rules can be symmetric or asymmetric with
respect to the vehicles.

In two-lane traffic it is of particular interest to investi-
gate systems with different types of vehicles. Chowdhury
et al. [14] considered a two-lane ring with slow and fast
vehicles (different vmax) evolving in both lanes. The simu-
lation results have shown that already for small densities,
the fast vehicles take on average the free-flow velocity of
the slow vehicles, even if only a small fraction of slow ve-
hicles have been considered. Recent simulation results of
Knospe et al. [12] show that the influence of slow vehicles
seems to be overestimated by the multi-lane variants of
the Nagel-Schreckenberg model (NaSch model). In order
to weaken the effect of slow vehicles they considered antic-
ipation effects, i.e. the driver estimates the velocity of the
vehicle in the next time step. They show that anticipation
reduces the influence of slow vehicles drastically.

a e-mail: najemmoussa@hotmail.com

In this paper, we want to go one step beyond that and
look for systematic slowing of cars caused by the trucks.
Thus, we propose here a 2-D extended version of the 1-
D Fukui-Ishibashi model, elaborated by Wang et al. [15],
for single lane traffic to take into account the exchange
of vehicles between the first and second lanes. The Wang
et al. model, denoted hereafter by “WWH model”, is a
CA model where the velocities of vehicles are determined
by Fukui-Ishibashi rules with stochastic delay for vehi-
cles following the trail of the vehicle ahead, i.e. no driver
would like to slow down when far away from the vehi-
cles ahead. In the high density case, the stochastic delay
in this model represents better safety (assurance of the
avoidance of crashes) than that of the Fukui-Ishibashi
model, and leads to much higher asymptotic average ve-
locities of traffic flow than NaSch model. As the found
in [15], the diagram of traffic flow against density, which
we call hereafter the “fundamental diagram”, is quite dif-
ferent from the NaSch and Fukui-Ishibashi models even
in the simplest case of vmax = 1. Throughout this work,
the two-lane traffic WWH model is compared to the cor-
responding NaSch model [12,13].

We introduce two kinds of vehicles on the circuit. Here,
we will denote by “cars” the fast vehicles and “trucks”
the slow ones. We study the effect of trucks on the two-
lane traffic flow for different traffic situations. The lane-
changing rules are those elaborated by Knospe et al. [12]
and can be symmetric or asymmetric with respect to lanes
or to the vehicles. We limit this work to the symmetric
case with respect to the lanes but the rules governing lane
changes can be symmetric or not with respect to vehicles.
Hence, for the asymmetric situation, the first lane is con-
sidered fast and the second is slow: only cars can exchange
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between the two lanes (symmetric rule with respect to the
lanes) while the trucks always move on the same (slow)
lane, i.e. lane change is forbidden. For the symmetric sit-
uation, both cars and trucks use the two lanes.

In order to investigate the role of the forward move-
ment of vehicles in two-lane traffic, we shall use two
different classes of models, namely the very well known
NaSch model [3] and the recently proposed model of Wang
et al. [15]. For the lane changing rules we choose those
proposed by Knospe et al. [12] in order to account for
the effects of interactions between the vehicles in the two
lanes. Our model is a CA defined on the two 1-D lattices
of 2∗N sites with periodic boundary conditions, forming a
closed circuit. The outline of this paper is as follows: In the
next section the forward movement and the lane changing
rules are defined. Simulation results and their discussion
is presented in Sections 3 and 4 where we give a detailed
analysis of the influence of trucks on the two-lane traf-
fic. Finally, we summarize our findings and present some
concluding remarks in Section 5.

2 Forward movement and lane changing rules

The NaSch model is a CA model which is described as fol-
lows: On a ring with L sites every site can either be empty
or occupied by one vehicle with velocity v = 0, 1, ..., vmax.
Let gap be the number of empty sites in front of the car,
and v its velocity at time t. At each discrete time step the
arrangement of N cars is updated in parallel according to
the following rules:

1) Acceleration: with regard to the vehicle ahead v′ ←
min (v + 1, gap, vmax);

2) Noise: with a probability p: v′′ ← max(v′ − 1, 0);
3) Movement: the car moves v′′ sites ahead.

The WWH model is a cellular automaton traffic flow
model between the Fukui-Ishibashi [4] and NaSch models.
The WWH model adopts the acceleration of the Fukui-
Ishibashi model and the NaSch stochastic delay only for
cars following the trail of the car ahead. Hence, WWH
adopt the following rules:

1) Acceleration: with regard to the vehicle ahead v′ ←
min (gap, vmax);

2) Noise: with a probability p: v′′ ← max(v′ − 1, 0) if
gap ≤ vmax;

3) Movement: the car moves v′′ sites ahead.

The single lane model is not capable of modelling real-
istic traffic for several reasons, primarily because realistic
traffic is usually composed of vehicles with different lim-
iting velocities evolving in multi-lane traffic. In this work,
we consider a two-lane model consisting of two single lanes
with periodic boundary conditions where additional rules
defining the exchange of vehicles between the lanes are
introduced. For the NaSch forward movement, we restrict
ourselves to the exchange rules of Knospe et al. [12] which
are defined by the following two criteria (see Fig. 1):
• Incentive criterion:
1. vhope > gap, with vhope = min (v + 1, vmax);

Fig. 1. Illustration of the quantities relevant for the lane
changing rules in the two-lane system. The hatched cells are
occupied by vehicles. Interest is focused on the vehicle noted
by v.

• Safety criteria:
2. gapother > gap;
3. gapback ≥ vmax.

On the one hand, if we assume that the safety crite-
ria hold and we adopt the Knospe lane-changing proce-
dure to the WWH model, a vehicle with gap > v + 1
will not change lanes and its velocity should be equal
to min (gap, vmax). However, if we suppose that this ve-
hicle changes lanes then its velocity will be equal to
min (gapother, vmax) which is higher than min (gap, vmax)
according to the safety criteria. This leads to an opti-
mization of the vehicle velocity. Thus, this shows that the
Knospe procedure of lane-changing is incompatible with
the WWH forward movement. On the other hand, since
the acceleration step of the WWH forward movement is
given by vt+1 = min (gap, vmax) then it is obvious to adopt
the following WWH lane-changing procedure:

• Incentive criterion:
1. vhope > gap, with vhope = vmax;
• Safety criteria:
2. gapother > gap;
3. gapback ≥ vmax.

In general, the update in the two-lane models is di-
vided into two sub-steps: in one sub-step, the vehicles may
change lanes in parallel following the lane changing rules
and in the other sub-step each vehicle may move effec-
tively by the forward movement rules as in the single-lane
traffic. On the other hand, two situations are examined for
lane changing rules: the symmetric case and the asymmet-
ric case with respect to the vehicles. In the former case the
lane-changing criteria are applied equally to both cars and
trucks. In the latter, the lane-changing rules are applied
only to cars.

In order to present the simulation results for the two
models explained above, we define as ρ the total density of
vehicles on the two lanes. In the initial state, the vehicles
are randomly distributed at sites of the system and the
percentage of trucks is taken to be 10%. We adopt the tem-
poral treatment of Nagatani [10], i.e. on odd time steps,
in the first lane, each vehicle moves forward or changes
to the second lane in parallel according to lane-changing
rules. On even time steps, the second lane is considered in
the same manner as the first one. Moreover, we consider
two different situations: the homogeneous case where the
two-lane system is occupied by fast vehicles only and the
inhomogeneous case where both types of vehicles evolve in
the system. The results are obtained from numerical simu-
lations on a lattice of 2×103 sites with a hundred random
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Fig. 2. Fundamental diagrams of individual lanes in the two-
lane models (open symbols) for homogeneous systems com-
pared with the corresponding single-lane diagrams for NaSch
and WWH models (solid symbols), vmax = 5 and p = 0.4.

initial configurations of vehicles. For each initial configu-
ration, results are obtained by averaging over 5×104 time
steps after the first 1× 104 time-steps, so that the system
reaches a stationary state.

3 Simulations of traffic without trucks
in the circuit

We examine first of all the behavior of fast vehicles in
the homogeneous case (no slow cars in the circuit). The
lane changing rules are applied equally in the two lanes
(symmetric case with respect to the lanes). These rules
sets are relevant for the traffic in towns and on highways,
where overtaking in both lanes is allowed. The fundamen-
tal diagram of the individual lanes in both models used
is shown in Figure 2, where we have included the curves
corresponding to the case of a single-lane road for braking
noise of p = 0.4. We note first that the average flow per
lane in both lanes are quite similar and that the simula-
tions reproduce well-known results, e.g. an increase of the
maximum flow per lane compared to the flow of a single-
lane model. In spite of additional disturbances introduced
in traffic via the lane changing rules, the general effects are
beneficial. However, this effect is very weak in the WWH
model as shown in Figure 2. In the same way, the behavior
of flow shows a maximum at low densities for both models
used, for the NaSch model, the flow reaches a maximum
at ρj max ≈ 0.1, which is at or near a sharp bend of the
flow curve, while this maximum is reached at appreciably
higher densities ρj max ≈ 0.16 in the WWH model.

To get further insight into the lane changing dynamics,
another interesting quantity to look at is the frequency of
lane changes at different densities. Hence, Figures 3 and 4
show the variations of the lane-changing frequency per car
against the total density ρ of cars for the two proposed
models. For the NaSch model, the maximum number of

Fig. 3. Density dependence of frequency lane-changes per car
in the NaSch model for a homogeneous system with vmax = 5
and p = 0.4.

Fig. 4. Density dependence of frequency lane-changes per car
in the WWH model for a homogeneous system with vmax = 5
and p = 0.4.

lane changes occurs at densities much higher than ρj max

whereas it is reached near ρj max in the WWH model. This
is due to the fact that for the latter model, the velocities
of vehicles are solely determined by the distances to the
vehicles ahead. Moreover, at small densities, the incen-
tive and safety criteria are almost never fulfilled since the
mean gap between consecutive vehicles is always greater
than vmax. With increasing density this gap becomes in-
creasingly smaller than vmax which encourages the drivers
to change lanes. Comparing the two classes of models,
the frequency of lane-changes is too much higher in the
NaSch model than that of WWH. This is due primarily
to the low acceleration in the NaSch model (equal to 1),
which leads to fast formation of plugs compared to the
WWH model which belongs to the class of large accelera-
tion traffic models.

An artifact of the described models is easily recogniz-
able when one starts with all cars on the same lane, say
the first one. Assuming fairly high density, then all cars
see somebody in front of them, but nobody on the second
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Fig. 5. Density dependence of ping-pong lane-changes per lane
in the NaSch model for p = 0.4. The variations of 121 -ping-
pong (indicated by symbols) are fairly similar to 212 -ping-pong
(indicated by solid curves).

lane. In consequence, everybody decides to change to the
second lane, so that all cars end up on the second lane.
Here, they now all decide to change to the first lane again,
etc., such that these coordinated lane changes go on for a
long time (ping-pong effect). To overcome this difficulty,
one randomizes the lane changing decision but the flow-
density curves are only marginally changed [11].

The frequency of “ping-pong lane changes” can be de-
termined as follows: a car makes two lane changes in two
consecutive iterations. Obviously, there are first-second-
first (121 ) and second-first-second (212 ) ping-pong lane
changes. Figures 5 and 6 show the evolution frequency
of (121 ) and (212 ) ping-pong lanes changes for both
NaSch and WWH models respectively. It is clear that
these curves actually look fairly similar (due to the sym-
metry of the lane changing rules) and that they decrease in
general with high densities. Yet, for the WWH model the
number of ping-pong lane changes is negligible compared
with the NaSch one and this offers better correspondence
with real traffic where the phenomenon of ping-pong is
rare or essentially non-existent. The behavior of the ping-
pong lane changes frequency is naturally the same as the
lane-change frequency in the two classes of models. More-
over, at small densities as found in [11], about 50% of the
lane changes are ping-pong changes.

4 Simulations of traffic with trucks
in the circuit

We now consider the inhomogeneous case which is obvi-
ously more relevant for practical purposes. We consider
two different situations: a) the symmetric case where the
fast as well as the slow vehicles may use both lanes, e.g.
both categories of vehicles are treated equally with re-
spect to the lane changing rules and b) the asymmetric

 
 

Fig. 6. Density dependence of ping-pong lane-changes per lane
in the WWH model for p = 0.4. The variations of 121 -ping-
pong (indicated by solid curve) are fairly similar to 212 -ping-
pong (indicated by symbols).

case where the trucks are introduced only in the second
lane, namely the trucks are constrained to move forward
in the second lane and are not allowed to change to the
first lane, whereas the fast vehicles may use both lanes.
In this case the lane change rules are applied solely to the
cars. Hence, the lane 1 and 2 are considered as fast and
slow lanes respectively.

It is clear that the introduction of the slow vehicles to
the system, even for small proportions, introduces a con-
siderable disruption of traffic. Indeed, two trucks driving
side by side on different lanes can form a plug which blocks
the succeeding traffic and then leads to the formation of a
platoon. This induces drastic traffic flow reduction [9,12].
To reduce the formation of plugs, several attempts have
been done for the NaSch traffic model such as anticipation
and sequential updates which lead to slightly increased
values for the maximum flow [12]. Another way of mini-
mizing these effects is to start with all of the trucks in the
second lane only, which are then not permitted to change
lane [13].

Fundamental diagrams

To show the effects of slow vehicles on two-lane systems
for the two classes of models, we consider the inhomoge-
neous flows for the symmetric and asymmetric versions.
Hence, initial conditions with 10% trucks with vtrucks

max = 3
and 90% cars with vcars

max = 5 with braking noises equal for
both types of vehicles (pcars = ptrucks = 0.4) analogous to
references [9,12] were selected for the symmetric version,
it is shown that the flows per lane in the first and the sec-
ond lane are fairly similar, which is due to the symmetry
of the lane changing update rules. In contrast, in the case
of asymmetric vehicle distribution, the flow in the second
lane is dominated by trucks, while the flow in the first
lane is higher than the corresponding symmetric model
(Figs. 7 and 8). For the two classes of models, at low den-
sities, cars can overtake trucks more effectively and then
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Fig. 7. Comparison of the flow per lane of a two-lane sys-
tem with 10% trucks, (pcars = ptrucks = 0.4 and vcars

max = 5,
vtrucks
max = 3) in the NaSch model for the symmetric and the

asymmetric versions of the lane changing rules.

Fig. 8. Comparison of the flow per lane of a two-lane sys-
tem with 10% trucks, (pcars = ptrucks = 0.4 and vcars

max = 5,
vtrucks
max = 3) in the WWH model for the symmetric and the

asymmetric versions of the lane changing rules.

the slow lane is dominated by trucks in the asymmetric
version, while the flow in the fast lane is slightly greater
than the flow of the homogeneous model. In the two classes
of models, for relatively low densities, we found that the
homogeneous total flow is greater than its corresponding
asymmetric inhomogeneous case which is in turn greater
than that of the symmetric inhomogeneous case (Figs. 9
and 10).Moreover, unlike the NaSch model, the plugs are
partially avoided in the WWH model and we obtain gen-
erally higher values for the average flows.

Now, it was assumed that the slow vehicles have
smaller braking parameters than the fast ones, and simu-
lations for the two classes of traffic models for pcars = 0.4,
ptrucks = 0.125 and 10% of trucks were conducted. For
the NaSch model, it is shown that in both symmetric

  
  
  

Fig. 9. Comparison of homogeneous with inhomogeneous total
flows (asymmetric and symmetric cases) for the NaSch model,
pcars = ptrucks = 0.4.

 
  
  

Fig. 10. Comparison of homogeneous with inhomogeneous
total flows (asymmetric and symmetric cases) for the WWH
model, pcars = ptrucks = 0.4.

and asymmetric versions, the inhomogeneous total flow
exceeds the capacity of a homogeneous system at a cer-
tain density of vehicles (Fig. 11); this phenomenon cannot
appear in realistic traffic. This paradoxical effect found
in the NaSch model can be explained as follows, at small
densities the evolution of cars is not obstructed by trucks.
As soon as the density becomes relatively significant, the
cars take on average the velocity of trucks i.e. the total
flow is dominated by that of the trucks. This behaves in a
manner similar to real traffic with vehicles with vmax = 3
and with p = 0.125. Moreover, we verified that at rela-
tively high densities, the homogeneous traffic flow with pa-
rameters (vmax = 5, p = 0.4) becomes smaller than that
corresponding to (vmax = 3, p = 0.125). Consequently, at
relatively high densities, the inhomogeneous total flow
will be greater than that of an homogeneous system. In
contrast, the WWH model does not seem to be signifi-
cantly affected by differences in the braking probability of
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Fig. 11. Comparison of homogeneous with inhomogeneous
total flows (asymmetric and symmetric cases) for the NaSch
model, pcars = 0.4 and ptrucks = 0.125.

 

Fig. 12. Comparison of homogeneous with inhomogeneous
total flows (asymmetric and symmetric cases) for the WWH
model, pcars = 0.4 and ptrucks = 0.125.

vehicles (Fig. 12). Now for the two classes of models, it is
easy to see that if we assign a smaller braking probability
to the fast vehicles (pcars = 0.125 and ptrucks = 0.4), the
flow of the inhomogeneous system is always smaller than
that corresponding to the homogeneous system.

In order to quantify the effect of the proportion of
slow vehicles and its effects on the phenomenon described
above, simulations with initial conditions of 10% and 20%
trucks were run for (pcars = 0.4, ptrucks = 0.125). Hence,
the paradoxical effect observed in the NaSch model in-
creases with the percentage of slow vehicles for both ver-
sions of symmetry (see for example the asymmetric case
in Fig. 13). However the WWH model exhibits only small
changes in the fundamental diagrams when we increase
the proportion of trucks in the circuit (Fig. 14).

 
 
 

Fig. 13. Comparison of homogeneous with inhomogeneous to-
tal flows (10% and 20% of trucks) in the asymmetric version
of the NaSch model, pcars = 0.4 and ptrucks = 0.125.

 

Fig. 14. Comparison of homogeneous with inhomogeneous to-
tal flows (10% and 20% of trucks) in the asymmetric version
of WWH model, pcars = 0.4 and ptrucks = 0.125.

Frequency and ping-pong lane-changes

For the two classes of models, we investigated the behavior
of the frequency and ping-pong lane-changes for the sym-
metric and asymmetric versions. The percentage of trucks
in the circuit is 10% and the braking noises are taken
as equal for both types of vehicles (pcars = ptrucks = 0.4).
The results of our simulations for the density dependence
of the lane changing frequency are given in Figures 15
and 16 where a comparison of this quantity in both sym-
metric and asymmetric situations is shown. We note first
that for the NaSch model at low densities the lane chang-
ing frequency for the symmetric version exceeds that cor-
responding to the asymmetric version whereas for high
densities the reverse is the case. Moreover, the maximum
of the lane changing frequency in the two examined ver-
sions is reached at the same value of the density (ρ ≈ 0.1).
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Fig. 15. Density dependence of frequency lane-changes per car
in the NaSch model for the symmetric (open symbols) and the
asymmetric (solid symbols) cases for pcars = ptrucks = 0.4 and
vcars
max = 5, vtrucks

max = 3.

 

 

Fig. 16. Density dependence of frequency lane-changes per car
in the WWH model for the symmetric (solid symbols) and the
asymmetric (open symbols) cases for pcars = ptrucks = 0.4 and
vcars
max = 5, vtrucks

max = 3.

In contrast, for the WWH model, the number of lane
changes in the symmetric version is always superior than
the corresponding asymmetric version. Comparing the two
classes of models, we notice that the WWH model allows
very few lane changes than that of NaSch one and espe-
cially in the asymmetric version. As a consequence of this
behavior, the plugs in the WWH traffic model are very
few compared to the corresponding NaSch model.

Next, we shall study the behavior of ping-pong lane
changes in the inhomogeneous system (Figs. 17 and 18).
For the two classes of traffic models and in the same way as
in the homogeneous case, the identical evolutions of (121 )
and (212 ) ping-pong lane changes in the symmetric ver-
sion reflect the symmetry lane changing rules. Moreover,
the asymmetry of lane changing rules (fast lane-slow lane)
leads to (212 ) ping-pong preference and induces a decrease
of the individual flow of the slow lane (lane 2) compared to

 
 

 
 

Fig. 17. Density dependence of ping-pong lane-changes per
lane in the NaSch model: in asymmetric and symmetric cases
for pcars = ptrucks = 0.4 and vcars

max = 5, vtrucks
max = 3.

 

 
 

Fig. 18. Density dependence of ping-pong lane-changes per
lane in the WWH model: in asymmetric and symmetric cases
for pcars = ptrucks = 0.4 and vcars

max = 5, vtrucks
max = 3.

that of the fast lane (lane 1) (see Figs. 7 and 8). Finally, we
point out that the introduction of trucks increases dras-
tically the lane change frequency as well as the number
of ping-pong lane changes. This induces a decrease in the
inhomogeneous total flow compared to that of the homo-
geneous case (see Figs. 9 and 10).

5 Conclusion

In summary, we have presented a comparison of stochastic
cellular automaton models for the traffic flow in a two-lane
roadway with two species of vehicles and for two versions
of symmetry. For the two classes of models we have shown
that the introduction of trucks in the circuit induces a
considerable disruption of highway traffic. Hence, our find-
ings confirm the well-known result that the slow cars in
two-lane systems dominate the behavior of the whole sys-
tem even for a small number of slow vehicles. Moreover,
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in both classes of models, the asymmetric total flow al-
ways exceeds the corresponding symmetric one. On the
other hand, in the NaSch model, the inhomogeneous total
flow exceeds the capacity of a homogeneous system from
a certain density of vehicles if we assign a small brak-
ing noise p to slow vehicles compared to that of the fast
ones (ptrucks < pcars). However, this paradoxical effect ob-
served in the NaSch model doesn’t appear in the WWH
model. Finally, by comparing the ping-pong frequencies,
we found that WWH model allows very few ping-pong
lane changes compared to the NaSch case (especially in
the asymmetric version). As a consequence of this behav-
ior, the two-lane traffic is found to be more fluid in the
WWH model compared to the NaSch one i.e. for the two
versions of symmetry, the WWH-flow exceeds the NaSch-
flow at all densities.
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